
Retrieval of Surface Reflectance Retrieval of Surface Reflectance 
and LAI Mapping with Data from and LAI Mapping with Data from 

ALI, Hyperion and AVIRIS ALI, Hyperion and AVIRIS 

P. Gong1, G. Biging1 , R. Pu1, and M. R. Larrieu2

1Center for Assessment and Monitoring of 
Forest and Environmental Resources (CAMFER)

University of California, Berkeley, USA
2Proyecto Forestal de Desarrollo, Secretaría de Apricultura

Buenos Aires, Argentina



ContentsContents
• Objectives
• Study Sites and Data
• Methods
• Results and Analysis
• Conclusions and Remarks
• Acknowledgments



ObjectivesObjectives
• Develop a simple atmospheric correction 

method
• Map LAI with the ALI, Hyperion and AVIRIS
• Examine the capabilities of the three sensors 

for extracting LAI information
• Compare different VI and red-edge 

parameters for LAI estimation



Study Sites and DataStudy Sites and Data
• Study sites: 

• Two sites, in Patagonia, Argentina
• Flat, semiarid region (show images)
• Forest plantations, conifer species:PP, LP and Oregon P.

• Spectroradrometric measurements
• ASD FieldSpec®Pro, covering 0.4 – 2.5 µm
• Road surface, canopy of young plantation

• LAI measurements
• 70 LAI plots, with LICOR LAI-2000 PCA
• Effective LAI



Study Sites and Data Study Sites and Data (Cont(Cont’’d)d)
• ALI: Advanced Land Imager 

Multispectral, 9 bands, 1 panchromatic, 30 m, 3/27/2001
• Hyperion: Hyperspectral Imager

• 220 bands, 0.4 – 2.5 µm
• 10 nm spectral, 30 m spatial resolution, 3/27/2001

• AVIRIS: Airborne Visible/InfraRed Imaging 
Spectrometer
• Hyperspectral sensor, altitude of 5029 m
• 224 bands, 0.4 – 2.5 µm
• 10 nm spectral, 3.6 m spatial resolution, 2/15/2001



Study Sites (ContStudy Sites (Cont’’d)d)
• Part of the images over the two sites 

North South



MethodsMethods
• Atmospheric correction

• Radiative transfer (RT) model
• Radiance simulated with MODTRAN4
• Retrieval surface reflectance

• LAI estimation and mapping
• Correlation
• LAI prediction model 
• LAI prediction and mapping



Atmospheric correction: A flowchart
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: atmospheric path radiance, 

: two way transmittance for the  sun-surface-sensor 
path,
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The at-sensor radiance L can be related to the 
Lambertian surface reflectance ρ by



Radiance simulation with MODTRAN4

- Input 3 surface reflectance values: 0.0, 0.3, 0.5

- Water vapor value 0.7 cm/cm2,

- And other necessary parameters for the code

- Output total radiance

Solving RT model
- To solve RT model, need  3 output total 

radiances simulated with MODTRAN4.

- Solve to obtain La, T2, and S.



Retrieval of surface reflectance of three
sensors’ data

• Retrieving surface reflectance: ρ
by RT model with known Limg, La, T2, 
and S for

- ALI
- Hyperion
- AVIRIS



Correlation analysis

• Extract pixel values at 32 LAI measured plots
– From the retrieved reflectance images
– 1-4 pixels at each LAI plot from Hyperion and ALI,  

25-225 from AVIRIS

• General correlation analysis of spectral bands 
with LAIs
– Correlograms of inter-band for Hyperion and 

AVIRIS
– Correlation with 32 LAI measurements



LAI prediction models and mapping
• Select a bunch of bands used for regression 

analysis based on
– Correlograms of inter-band of the hyperspectral sensors’ data

– Peak values along the correlation curves

– Physical meaning (absorption features)

because of redundant information of and inflation phenomenon of R2

of small observation size (32) relative to large number of bands
(~200) of hyperspectral data. Select 12-15 bands from Hyperion and 
AVIRIS

• Constructing a 6-term LAI prediction model for 
the three sensors’ data

• Predicting pixel-based LAI with 6-term prediction 
models for three sensors’ data



Results and AnalysisResults and Analysis
• Three total radiances simulated
• Results at different processing stages
• ASD ratio coefficients
• Comparison of retrieved reflectances from the 

three sensors 
• Correlograms of inter-band of hyperspectral data
• Correlation of three sensors with ALI
• Determination of 6-term models
• LAI prediction model (Tables)
• LAI maps



Three total radiances simulated by MODTRAN4, 
inputs: ref=0.0, 0.3, 0.5 and wv = 0.7 cm/cm2
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Original radiance of Hyperion 
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Corrected radiance of Hyperion
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Surface reflectance retrieved from Hyperion
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Modified surface reflectance retrieved from 
Hyperion 
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ASD ratio coefficients 
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Comparison of retrieved reflectances among 
three sensors: ALI, Hyperion and AVIRIS 
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Comparison of retrieved reflectances between 
two sensors: Hyperion and AVIRIS
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Correlograms of inter-band 
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Correlation coefficients of three sensors’ data 
with LAI 
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Correlation coefficients of two sensors: 
Hyperion and AVIRIS with LAI
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Determination of 6 bands used for constructing 
LAI prediction models  
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LAI prediction models using retrieved surface
reflectance data from ALI, Hyperion and AVIRIS
N = 32, 6 bands selected into the models.

Hyperion ALI AVIRIS
Log(Ref) Log(Ref) Log(Ref)

R2 0.8019 0.7884 0.8731
Wavelengths 499, 913, 1437 483, 790, 868 684, 932, 1080
(nm) 1639, 2093, 2275 1250, 1650, 2215 1991, 2261, 2400
OAA(%) 78.56 77.82 82.83
S.D. 0.5492 0.5679 0.4397

Note: OAA=overall accuracy; S.D.=standard deviation; 
all of R2 are significant at 0.99 confident level. 
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Index Formula Description References (e.g.)
SR Near-infrared / Red rreflectance ratio (Simple Ratio VI). Baret and Guyot, 1991;

Related to changes in amount of green biomass, pigment Tucher, 1979.
content and concentraion and leaf water stress etc.

NDVI (ρNIR-ρR)/(ρNIR+ρR) Normalized Difference Vegetation Index. Fassnacht et al., 1997;
Related to changes in amount of green biomass, pigment Smith et al., 1991.
content and concentraion and leaf water stress etc.

PVI Perpendicular Vegetation Index, orthogonal to the soil line. Baret and Guyot, 1991;
Attempts to eliminate differences in soil background and is Huete et al., 1985.

a = slope of the soil line most effective under conditions of low LAI, applicable for
b = soil line intercept  arid and semiarid regions.

SAVI Soil Adjusted Vegetation Index. L ranges from 0 for very high Huete, 1988;
vegetation cover to 1 for very low vegetation cover; Leeuwen and Huete, 1996.
minimizes soil brightness-induced variations

L = a correction factor L=0.5 can reduce soil noise problems for a wide range of LAI.
NLI Non-Linear vegetation Index. Goel and Qin, 1994

Consider the relationship between many VIs and surface 
biophysical parameters is often nonlinear, and NLI linearizes 
relationships with surface parameters that tend to be nonlinear.

RDVI Renomalized Difference Vegetation Index. Roujean and Breon, 1995.
RDVI linearizes relationships with surface parameters
 that tend to be nonlinear.

MSR Modified Simple Ratio.  It can be an improvement over RDVI Chen, 1996.
for linearizing the relationships between the index and 
biophysical parameters.
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Index Formula Description References (e.g.)
WDVI Weighted Difference Vegetation Index. Clevers, 1988;

WDVI assumes that the ratio between NIR and R Clevers, 1991.
a = slope of the soil line reflectances of bare soil is constant; it is a mathematically 

version of PVI, but it has an unrestricted range.
MNLI Modified Non-linear vegetation Index. MNLI is an improved Developed in this paper.

version of NLI, and it also consider merit of SAVI.
L=0.5 may be applicable for a wide range of LAI.

L = a correction factor For detailed description, see text.
NDVI*SR Attemps to combine merit of NDVI with that of SR. Developed in this paper.

For detailed description, see text.

SAVI*SR Attemps to combine merit of SAVI with that of SR. Developed in this paper.
For detailed description, see text.

TSAVI Transformed Soil Adjusted Vegetation Index. Baret and Guyot, 1991; 
Modify Huete (1988) SAVI to compensate for soil variability 

a = slope of the soil line due to changes in solar elevation and canopy structure.
b = soil line intercept
X = adjustment factor to
   minimize soil noise.

Note:             denoted as reflectances in red and near-infrared wavelengths, but in this study, they represent band 1 and band 2
across all avaliable 193 bands of Hyperion data.
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Three approaches (Cont’d)
• Polynomial fitting (in fifth order)
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• IG red edge model, linear fitting with least 
square solution (Miller et al., 1990)



RR22 gray scale plot for SAVI vs. LAIgray scale plot for SAVI vs. LAI
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Potential hyperspectral bands for Potential hyperspectral bands for 
estimating forest LAIestimating forest LAI

Indiex R2 Band Bandwidth Band description
NIR-R/Optim. center (nm) (nm) (spectral region and possible absorption features)

SR 0.55/0.70 825 140 NIR region, cell structure multi-reflected spectra.
1038 230 NIR-SWIR region, water, proten, lignin, starch & oil absorption
1250 180 SWIR region, water, cellulose, starch and lignin absorption
1648 290 SWIR region, protein, nitrogen, lignin, cellulose, 

sugar, starch absorption.
NDVI 0.55/0.70 … … 4 bands similar to SR's
PVI 0.45/0.64 814 140 NIR region, cell structure multi-reflected spectra.

1050 100 NIR-SWIR region, proten, lignin, and oil absorption
1250 190 SWIR region, water, cellulose, starch and lignin absorption
2100 10 SWIR region, starch, cellulose absorption

SAVI 0.50/0.67 … … 4 bands similar to NDVI's or SR's
NLI 0.50/0.73 821 157 NIR region, cell structure multi-reflected spectra.

1200 578 NIR-SWIR region, water, proten, starch, lignin, cellulose, 
and oil absorption

1250 191 SWIR region, water, cellulose, starch and lignin absorption
1640 300 SWIR region, protein, nitrogen, lignin, cellulose, 

sugar, starch absorption.
RDVI 0.45/0.66 810 170 NIR region, cell structure multi-reflected spectra.

1054 10 SWIR region, lignin and oil absorption
1255 161 SWIR region, water, cellulose, starch and lignin absorption
1669 10 SWIR region, lignin and starch absorption
2093 10 SWIR region, starch and cellulose absorption



Potential hyperspectral bands for Potential hyperspectral bands for 
estimating forest LAI (Cont’d)estimating forest LAI (Cont’d)

Indiex R2 Band Bandwidth Band description
NIR-R/Optim. center (nm) (nm) (spectral region and possible absorption features)

MSR 0.50/0.70 … … 4 bands similar to NDVI's or SR's
WDVI 0.45/0.63 1377 10 SWIR region, water absorption

1427 10 SWIR region, lignin absorption
1639 10 SWIR region,non apparent absorption
2113 10 SWIR region, starch and cellulose absorption
2285 30 SWIR region, starch, cellulose and protein absorption

MNLI 0.45/0.75 … … 4 bands similar to NLIs
NDVI*SR 0.50/0.71 … … 4 bands similar to NDVI's or SR's, but 
SAVI*SR 0.50/0.71 … … 1 - 4 bands similar to SAVI's or SR's

2083 30 SWIR region, sugar, starch and cellulose absorption
2153 10 SWIR region, protein absorption

TSAVI 0.50/0.71 832 120 NIR region, cell structure multi-reflected spectra.
1038 150 NIR-SWIR region, water, proten, lignin, starch & oil absorption
1240 170 SWIR region, water, lignin, cellulose and starch absorption
1660 260 SWIR region, lignin, cellulose, sugar, starch, protein, 

and nitrogen absorption.
2108 20 SWIR region, starch, cellulose and protein absorption

Note: Optim. = optimal correlation R2; bold chemicals are principal for the absorption features



44--point approachpoint approach

REP  = 720.89LAI 0.0023

R2 = 0.6457
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ConclusionsConclusions
• The method of atmospheric correction used in this 

study is promising but needs refinement.
• LAI prediction model derived from AVIRIS has the 

highest correlation and lowest regression SD, 
followed by Hyperion and ALI

• Since atmospheric effects on VNIR more than 
SWIR, more potential in SWIR with Hyperion.

• Atmospheric correction is critical for hyperspectral 
data application, especially in VNIR region



Conclusions contConclusions cont’’dd
• Most of the important bands with high R2 related to bands in 

SWIR region and some in NIR region. 
• The bands centered near 820, 1040, 1200, 1250, 1370, 

1430, 1650, 2100, 2260 nm with bandwidths from 10 to 300 
nm are important for constructing VIs for estimating LAI. 

• The 4-point approach is a more practical application 
method to extract two red edge parameters because only 4 
bands are considered for use 

• It is notable that the originally defined VIs with R and NIR 
bands did not produce higher correlation with LAI than VIs 
constructed with bands in SWIR region. 

• Atmospheric correction is critical for hyperspectral data 
application, especially for VNIR region
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